
Chapter 5
ATPG

Arnaud Virazel
virazel@lirmm.fr

mailto:virazel@lirmm.fr

Test Pattern Generation
n Introduction

n Random Test

n Deterministic Test
n at structural level

n Combinatorial circuits (D-algorithm, PODEM)

n Sequential circuits (Chapter 6)
n at functional level

n Memory test (Chapter 8)

2

Introduction
n Hypotheses

n The test applied off-line
n Test vectors (and goldel responses) are

stored in the ATE
n The ATE applies the test sequence and

compares the test rfesponses with goldel
ones

3

Introduction
n Main issues

n Test generation cost (i.e. time + silicon)
n Test quality (i.e. manufacturing defect

coverage)
n Test application cost (i.e. ATE + time)

n Evaluation
n Test Coverage à TC

4

Evaluation
n Test Coverage

n Efficiency

5

detected faults by the test sequence
total of fault of the considered modelTC =

detected faults by the test sequence
of testable faults of the considered modelEff =

Radom Test
n Test vectors generated randomly

n Low generation cost

6

Random Test
n Test quality

n Depends on the test sequence lenght
n It is easy to reach Tc @ 60% to 80%
n Long test sequence for a reasonable Tc @ 95%
n Very long test sequence for a high Tc >98%

n High application cost because long test
sequences

n High application time and memory required

7

ATPG – Determinictic Test
n ATPG : Automatic Test Pattern Generation

8

DUT
DESCRIPTION

FAULT
LIST

GENERATION

FAULT
LIST

COLLAPSED/UNCOLLASPSED

ATPG

TEST
SEQUENCE

TC, EFF ….

ATPG Process

9

X
1
0
0
1
0
1
X
X

Sa0

1/0

Fault sensitization

Non-masking propagation path

Primary Inputs
(PI) Primary Outputs

(PO)

DUT

1/0

Fault Effect

D-algorithm – Principle
n Steps

1. define the test of a fault f in terms of I/O of the faulty gate

2. determine all sensitizable paths from the site of the fault to all
the POs of the circuit (forward-trace phase)

3. build the test vector on the EPs which performs all the
assignments made in 1/ and 2/ (backward-trace phase)

10

D-algorithm – Principle
n A 5-value algebra

n 0, 1, X, D (1/0), D (0/1)
n D è 1 golden DUT and 0 faulty DUT
n D è 0 golden DUT and 1 faulty DUT
n D à D*

n 2 D-Cubes
n Primitive D-cube
n Propagation D-Cube

11

Primitive D-cube
n Primitive D-cube of a fault on a gate

n Allows to propagate a fault effect, at the output of a gate using
D or D, by applying certain values at its inputs

12

e1 e2 S
1 1 D

Primitive D-cube of a Sa0 fault
at the output of an AND-gate

Propagation D-Cube
n Propagation D-cube of a gate

n Specifies the values to apply to the side inputs, i.e. all except
the one(s) carrying the fault effect

n Then D or D value is propagated from input(s) to output

13

e1 e2 S
D 1 D cube single
1 D D ’’
D D D cube multiple
D 1 D cube single
1 D D ’’
D D D cube multiple

Propagation D-
cube of a 2-input

AND gate

D-algorithm – Example
n 0/ Build all the

propagation D-
cube of the DUT

14

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

e1 e2 e3 e4 l5 l6 l7 l8 l9 l10 l11 l12
a 0 x D x D* x x x x x x x
b D x 0 x D* x x x x x x x
c x 0 D x x D* x x x x x x
d x D 0 x x D* x x x x x x
e x 0 x D x x D* x x x x x
f x D x 0 x x D* x x x x x
g x 0 x x D x x D* x x x x
h x D x x 0 x x D* x x x x
9 0 x x x x D x x D* x x x
…..

Lines

Cubes

D-algorithm – Example
n 1/ Select the primitive D-cube that

sensitize the considered fault (i.e. Sa0
on net l6):

15

e1 e2 e3 e4 l5 l6 l7 l8 l9 l10 l11 l12
x 0 0 x x D x x x x x x

D-algorithm – Example

16

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

Sa0

D0
0

D-algorithm – Example
n 2/ Propagation of D or D* to the DUT output, i.e. l12

forward-trace phase

17

e1 e2 e3 e4 l5 l6 l7 l8 l9 l10 l11 l12

C0 0 0 D

C1=C0 Ç (9) 0 0 0 D D*
C2=C0 Ç (10) 0 0 0 D D*
C3=C1 Ç (12) 0 0 0 D 0 D*0 0 D
C4=C2 Ç (12) 0 0 0 D D*0 0 0 D

C5=C0 Ç (9) Ç (10)
C6=C5 Ç (12)

0 0 0 D0 D* D*
0 0 0 D0 D* D*0 0 D

G6

G9
G10
G12
G12

G9,G10
G12

Activated
gate

Gate
to activate

G9,G10

G12
G12
Æ
Æ

G12
Æ

I

II

III

D-cubes

I : Initial D-cube (C0) that sensitize the Sa0 at the output of gate G6

II : 2 single paths (single D-cube) – C3 and C4 D-cubes

III : 1 multiple path (multiple D-cube) – C6 D-cube

D-algorithm – Example
n Intersection rules

18

Ç 0 1 x D D*
0 0 - 0 - -
1 - 1 1 - -
x 0 1 x D D*
D - - D D -
D* - - D* - D* conflict

e1 e2 e3 e4 l5 l6 l7 l8 l9 l10 l11 l12
C0 x 0 0 x x D x x x x x x
(9) 0 x x x x D x x D* x x x

Ç = 0 0 0 x x D x x D* x x x

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

D-algorithm – Example
n C3

19

Sa0

D0
0

0

0

D*

0

0

D

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

D-algorithm – Example
n C4

20

D0
0

0

0

D*

0

0

D
Sa0

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

D-algorithm – Example
n C6

21

D0
0

0

0

D*

D*

0

D

0 Sa0

D-algorithm – Example
n 3/ build the test vector on the EPs which

performs all the assignments made during
step 1/ and 2/
backward-trace phase

22

D-algorithm – Example
3/ Justification phase of D-cube C3

23

1

e1 e2 e3 e4 l5 l6 l7 l8 l9 l10 l11 l12
D-cubes

C3 0 0 0 D 0 D* 0 0 D
P11(a) NOR G11 x 1 0
P11(b) NOR G11 1 x 0

C3ÇP11(a) 0 0 0 D 0 D* 0 0 D1
1
x

x 0
0

P10(a) NOR G10
P10(b) NOR G10

C3ÇP11(a) ÇP10(a)
P8(a) NOR G8
P8(b) NOR G8

0 0 0 D 0 D* 0 0 D11
1
x

x
1

0
0

C3 ÇP11(a) ÇP10(a) ÇP8(b)
P7 NOR G7

0 0 0 D 0 D* 0 0 D11 1
0 0

x x x
x x x x x x x x x

xxxxxxxxx

Value to justify
Incompatibility

1

Incompatibility on PI e4
Unable to test Sa0 on l6 using the single propagation path

corresponding to D-cube C3 (G9, G12)

D-algorithm – Example
3/ Justification phase of D-cube C6

D-algorithm – Issues
n Excessive execution time

number of paths + exhaustive process + redundant faults

n Improvements
n 9V- algorithm

same strategy but simultaneous sensitization of all
propagation paths

n A new strategy with PODEM
Path-Oriented Decision Making

25

PODEM – Principle
n The test of combinatorial circuits is seen as a

traveling problem in a tree
n Algorithm in which all input combinations are

implicitly examined as a test vector for a given
fault

n The circuit structure is used to guide successive
trials of input combinations

26

PODEM – Algorithm

27

1. Determine the objective to be achieved
­ propagation of a D value to POs

2. «backward» of the objective to PIs
­ If justification of the inputs of a gate whose output is at a priority value (i.e. for

example a 1 for the OR gate), select the most easily controllable input at the priority
value à among several solutions, select the one that is most likely to be satisfied

­ If justification of the inputs of a gate whose output is at a non-priority value (i.e. for
example a 0 for the OR gate), select the most difficult input to control at the non-
priority value à among several problems to be solved select of the one to be the
most difficult (in order to avoid global failure after solving easier problems)

3. Compute the implications of all assignments made in /2
4. If a test vector is found, exit
5. Else

5.1. if the objective is reached then modification an back to /1
5.2. Else

– if test still possible then return to /2 for a new assignment
– Else return to /1 for modification of the objective

PODEM – Example

28

d' h

a
b
c

g

e'

k

j

i

l

m

n

d

f

f’

e

Sa1

PODEM – Algorithm

29

Objective PIs Implications D-border

Test generation
success

PODEM – Exercise

30

e1

e2
e3

e4

G8

G9

G10

G11

G12G6

G7

G8G8

G5

Sa0

FAN

n It is an improvement of PODEM on a certain
number of heuristics relating to divergences
(i.e. fanout)

n Improvements
n The justification phase is stopped on the tops of logic cones

of the DUT (i.e. before any fanout) because their justification
will always be possible à CPU time saving

n Multiple propagation à all branches of a fanout are exploited

31

